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Abstract

We investigate the use of polymorphic categorial grammars as a model for parsing natural language.
We will show that, despite the undecidability of the general model, a subclass of polymorphic categorial
grammars, which we call linear, is mildly context-sensitive and we propose a polynomial parsing algorithm
for them. An interesting aspect of the resulting system is the absence of spurious ambiguity.

1 Introduction

The simplest model of a categorial grammar is based on the so called Ajdukiewicz–Bar-Hillel calculus of
Ajdukiewicz [1935] and Bar-Hillel [1953], with only elimination rules for the slashes. Contemporary categorial
grammars in the style of Ajdukiewicz–Bar-Hillel grammars are called combinatory categorial grammars, see
Steedman [2000]. Such systems adopt other forms of composition rules which enable them to generate non–
context-free languages, see Weir and Joshi [1988]; Vijay-Shanker and Weir [1994]. The other main tradition
of categorial grammar, the type-logical grammars of Morrill [1994]; Moortgat [1997], stemming from the
work of Lambek [1958], adopt special kinds of structural rules, that enable the system to generate non–
context-free languages. Both approaches increase the generative power of the basic system by adding special
kinds of rules.

Here we adopt a different strategy, which consists in keeping the elementary rule component of AB
grammars and in introducing polymorphic categories, that is syntactic categories containing atomic variables
ranging over categories. The inference process will be driven by unification, rather than by simple identity
of formulas. We will see two kinds of polymorphic categorial grammars, one that is Turing complete and
another, resulting from a restriction on the first, which is mildly context-sensitive. This second system,
which is obviously the most interesting one for linguistics, has some important advantages with respect to
the aforementioned categorial settings. In respect to TLG, the polymorphic system we define is polynomial,
as we will prove by providing a parsing algorithm. In respect to CCG, our system is not affected by the
so called spurious ambiguity problem, that is the problem of generating multiple, semantically equivalent,
derivations.

The deductive system given in Figure 1, which we call AB⊗, is a simple modification of the calculus of
Kandulski [1988] to which it can easily be proved equivalent.

Identity Axioms: A→ A

Product Axioms: A, B → A⊗B

Cut Rule:
Γ→ A ∆[A]→ C

∆[Γ]→ C
(C)

Shifting Rules:
Γ→ C/A

Γ, A→ C
(S1)

Γ→ A\C
A,Γ→ C

(S2)

Figure 1: Ajdukiewicz–Bar-Hillel calculus with product, AB⊗.

This basic CG models can be extended to generate non context-free languages in at least two ways. The
first uses structural rules, introduction rules and other types of composition schemes. These approaches
are characteristic of TLG, see Morrill [1994]; Moortgat [1997]; Moot [2002], and CCG, see Steedman [2000];



Baldridge [2002], and have been widely explored in the past. The second is based on the introduction of
polymorphism. Here, we study this second approach.

The formalism of polymorphic categorial grammar that we are going to present is inspired by the poly-
morphic theory of types, see Girard et al. [1989]; Barendregt [1992]. Types may contain type variables
together with constants, and these variables may be (implicitly or explicitly) quantified over. The idea of
polymorphism is very simple and natural. Rather than defining a class of id functions idInt :: Int → Int,
idChar :: Char → Char and so forth, the function id is defined for any type α, as id :: ∀α.α → α or
id :: α→ α where α is implicitly universally quantified.

The same idea is very natural also in linguistics, where, for example, coordination particles such as ‘and’
and ‘or’ are typically polymorphic, as they coordinate expressions of almost any syntactic category. Thus
one can find in the categorial grammar literature several examples of polymorphic assignments for these
expressions Lambek [1958]; Steedman [1985]; Emms [1993]; Clark and Curran [2007].

Another example of Ajdukiewicz–Bar-Hillel style categorial grammars adopting a form of polymorphism
are the unification categorial grammars Uszkoreit [1986]; Zeevat [1988]; Heylen [1999], where polymorphism
is used at the level of feature structures.

1.1 Unification Ajdukiewicz–Bar-Hillel grammars

Syntactic categories of UAB⊗ are defined as follows.

Atoms: A ::= a, b, c, n, s, i . . .
Variables: V ::= α, β, γ . . .
Categories: F ::= A | V | F ⊗ F | F\F | F/F

Unification of two categories A and B is defined in the obvious way and and the resulting substitution is
denoted A ≈ B.1 The unification Ajdukiewicz–Bar-Hillel calculus, UAB⊗ is defined in Figure 2.2

Identity Axioms: A→ A

Product Axioms: A, B → A⊗B

Cut Rule:
Γ→ A ∆[B]→ C

∆[Γ]→ C(A ≈ B)
(C ′)

Shifting Rules:
Γ→ C/A

Γ, A→ C
(S1)

Γ→ A\C
A,Γ→ C

(S2)

Figure 2: Unification Ajdukiewicz–Bar-Hillel calculus, UAB⊗

We give here some examples of non context-free languages generated by UAB⊗ grammars.

Example 1 We define the UAB⊗ grammar for the language anbncn, n > 1. Let grammar G1

consist of the following assignments:

a :: s/(b⊗ c) b :: b
a :: (s/α)\(s/(b⊗ (α⊗ c))) c :: c

We derive the string ‘aabbcc’. We write A for the formula (s/α)\(s/(b⊗(α⊗c))). For readability,
boxes are drawn around the words that anchor the axioms to the lexicon.

a

s/(b⊗ c)→ s/(b⊗ c)

a

A→ A
s/α,A→ s/(b⊗ (α⊗ c))

s/(b⊗ c), A→ s/(b⊗ ((b⊗ c)⊗ c))
s/(b⊗ c), A, (b⊗ ((b⊗ c)⊗ c))→ s

b

b→ b

b

b→ b
c

c→ c
b, c→ b⊗ c

c
c→ c

b, c, c→ (b⊗ c)⊗ c
b, b, c, c→ b⊗ ((b⊗ c)⊗ c)

s/(b⊗ c), A, b, b, c, c→ s

Example 2 We define a UAB⊗ grammar for ‘ww’, w ∈ {a, b}+.

1We use postfix notation for application of a substitution to a formula.
2Obviously, the rules involving unification are only defined if unification is defined.



Let grammar G2 consist of the following assignments:

a :: a b :: b
a :: s/a b :: s/b
a :: (s/α)\(s/(α⊗ a)) b :: (s/α)\(s/(α⊗ b))

It is easy to see that grammar G2 generates exactly the language ‘ww’ with w ∈ {a, b}+. As in
the case of G1, type variables are used as accumulators for long-distance dependencies.

A typical example of non context-freeness of natural language are the so called cross serial dependencies,
which can be found, for instance, in Dutch subordinate clauses.

Example 3 We define a UAB⊗ grammar for Dutch cross-serial dependencies. An example is
the following subordinate clause, from Steedman [2000]:

Ik
I

Cecilia
Cecilia

Henk
Henk

de
the

nijlpaarden
hippopotamuses

zag
saw

helpen
help

voeren.
feed.

I saw Cecilia help Henk feed the hippopotamuses.

These constructs exhibit dependencies of the form ‘ww’, where the ith words in the two halves are
matched. An example lexicon generating the sentence in this example is the following3:

Ik, Cecilia, Henk, de nijlpaarden :: n
zag :: ((n⊗ (n⊗ α))\c)/(α\i)
helpen :: ((n⊗ α)\i)/(α\i)
voeren :: n\i

N

n, (n, (n, n))→ n⊗ (n⊗ (n⊗ n))

zag

Z → Z
Z,α\i→ (n⊗ (n⊗ α))\c

helpen

H → H
H,α\i→ (n⊗ α)\i

voeren

n\i→ n\i
H, n\i→ (n⊗ n)\i

Z, (H,n\i)→ (n⊗ (n⊗ (n⊗ n)))\c
(n⊗ (n⊗ (n⊗ n))), (Z, (H,n\i))→ c

(n, (n, (n, n))), (Z, (H,n\i))→ c

These examples show that the languages generated by UAB⊗ grammars properly include the context-free
languages (since AB⊗ grammars are properly included in UAB⊗ grammars). It is also easy to show that if
we allow null assignments, that is assignments of the form ε :: A, where ε is the empty string, the UAB⊗

formalism becomes undecidable4.

1.2 Constraining UAB⊗ grammars

One constraint that we can impose on UAB⊗ grammars to avoid undecidability is linearity. Roughly, we
impose the restriction that any lexical type may contain at most one variable, occurring once in an argument
position and once in value position. Thus, for instance, α/α, (s/α)\(s/(α⊗a)) are licit types, while (α\α)/α,
(s/(α ⊗ β))\(s/((α ⊗ β) ⊗ a)) and (s/(α ⊗ α))\(s/((α ⊗ α) ⊗ a)) are not. More precisely we define linear
categories as the types F2 generated by the following context-free grammar.

] ::= ⊗ | / | \ ]′ ::= / | \
F0 ::= A | F0]F0 F1 ::= F1]F0 | F0]F1 | α
F2 ::= F1]

′F1 | F0 | F2]
′F0 | F0]

′F2

(1)

The interesting case in this definition are the F2 formulas of the form A/B or B\A, with A and B in F1, the
others being meant essentially to put these in context. Consider the case of A/B, then α occurs exactly once
in A and in B, since a F1 category contains the variable α by construction. By analogy with lambda terms,

3In the deduction, we write Z for the type of ‘zag’, H for that of ‘helpen’ and N for the string ‘Ik, Cecilia, Henk, de
nijlpaarden’.

4One can easily adapt the construction of Johnson [1988] for proving the undecidability unification cased phrase-structure
grammar formalisms, see Capelletti and Tamburini [2009a].



we can think of the occurrence of α in B as a binder (possibly a pattern-binder), and of the occurrence in A
as the bound variable.

An UAB⊗ grammar is linear if all its lexical assignments are linear. Furthermore, in linear UAB⊗

grammar, we work by simple variable instantiation, rather than by a full-fledged unification algorithm.
More precisely let us denote AB a formula A with a distinguished occurrence of a subformula B. AC is the
formula obtained from AB by replacing the occurrence of the subformula B with the formula C. The linear
UAB⊗ calculus consists of all the rules of the UAB⊗ calculus in Figure 2 replacing the Cut rules with the
following instantiation rule.

Γ→ AB ∆[Aα]→ C

∆[Γ]→ C[α := B]
(2)

Observe that given a linear UAB⊗ grammar adopting the rule in 2, only linear types can occur in any of
its deductions.

Observe also that the UAB⊗ grammars for anbncn and ww languages as well as that for the Dutch cross
serial patterns, are all linear. On the other hand, no linear UAB⊗ grammar can be given for the so called
MIX or Bach language that is the language of the strings containing an equal number of a’s, b’s and c’s5.

As we have the proper inclusion of context-free languages and the realization of limited cross-serial
dependencies, in order to have a mildly context-sensitive grammar formalism we shall prove that linear
UAB⊗ grammars can be parsed in polynomial time. We do this in the next section by providing a parsing
algorithm for linear UAB⊗ grammars.

2 Polynomial parsing with linear UAB⊗ grammars

Linear UAB⊗ grammars can be parsed in polynomial time by means of a simple extension of parsing
algorithm for AB⊗ grammars given in Capelletti [2009], see Appendix A. Attention has to be paid to
the way we implement the completion rules based on the cut rules in 2. Clearly the direct instantiation and
substitution of the variable in the conclusion sequent will give an exponential growth of the number of items
generated (in a similar way is it would happen by implementing naively the CCG composition rules, see
Vijay-Shanker and Weir [1990]). Therefore we make use of an extra table to keep track of partial variable
instantiations and postpone substitution as far as possible. This table, which we call instantiation table, is
used for storing the ‘partial’ instantiations of variables. Let n be the length of the input string and Lex the
input lexicon. Cells of the instantiation table are denoted t(i,k,j), where 0 6 i < j 6 n and 0 6 k 6 |Lex|. We
extend the construction of formulas with two kinds of variables, αk and α(i,k,j) where i, k and j are as before.
The difference between the two kinds of variables is that αk is an uninstantiated variable while α(i,k,j) is a
variable αk which has been instantiated when an item (i,Λ→ C, j) was generated, by the new instantiation
rule given below. The algorithm assumes that different lexical entries contain different variables, that is
for no k the variable αk occurs in two distinct lexical assignments. The algorithm uses the following two
new rules (of which we give only one oriented variant) together with those given for parsing with AB⊗ in
Appendix A.

Given items (i,∆ . Aαl Γ→ C, k) and (k,Λ→ AB , j),
generate the item (i,∆Aαl . Γ→ C[αl := α(i,l,j)], j)
update the table t(i,l,j) = t(i,l,j) ∪ {B}

Given item (i,∆ . α(k,l,m) Γ→ C, j) and A ∈ t(k,l,m)

generate item (j, .A→ α(k,l,m), j)

(3)

In Capelletti and Tamburini [2009a], we presented the detailed implementation of the parsing algorithm
and proved its correctness. The complexity of the implementation given there is O(|Lex|2|Σ|2n7), where
|Lex| and |Σ| are the sizes of the lexicon and of the set of subformulas of the lexicon, respectively.

5To see this, we observe that the context-free language of the strings containing an equal number of a’s and b’s is not linear,
in the sense of Hopcroft and Ullman [1979], see Linz [1990]. Hence for the MIX language, a UAB⊗ grammar needs to bind two
distinct variables for each symbol, what violates linearity.



3 Conclusion

We have investigated some linguistic and computational properties of unification based categorial grammars.
We have seen that, like other unification based grammar formalisms, unrestricted UAB⊗ grammars are
Turing complete. However, we have also seen that the constraint of linearity locates the system among the
mildly context-sensitive formalisms. A pleasant aspect of the resulting system, particularly with respect to
others CG-based mildly context-sensitive categorial formalisms is the absence of spurious ambiguity. This is
a pleasant property that results from the simple non-associative composition schemes adopted in the parsing
system (see Appendix A and Capelletti and Tamburini [2009b]), and not from special constraints imposed
to the derivations, as in Eisner [1996].

We conclude by observing that the linearity constraint can also be relaxed. For instance, while preserving
the condition that only one variable occurs in a formula, we can admit more than two occurrences of this
variable. In this way, we can include the standard types for coordination, (α\α)/α.

This condition enlarges the class of generated languages, producing for instance wi or ai1ai2 . . . a
i
n. To what

extent and with what consequences from the computational point of view, is an open subject of investigation.

A Parser

Let an AB⊗ grammar G and a string w1 . . . wn be given. The AB⊗Mix deductive parser is the triple (I,A,R)
presented in Figure 3. See Capelletti and Tamburini [2009a] for the O(|Lex|2|Σ|2n7) implementation of this
parsing algorithm.

I =
{ (i,Γ .∆→ A, j) | Γ∆→ A ∈ AB⊗, 0 6 i 6 j 6 n }

∪
{ (i,Γ /∆→ A, j) | Γ∆→ A ∈ AB⊗, 0 6 i 6 j 6 n }

A = { (i− 1, A→ A, i) | wi :: A ∈ Lex }

R =



(i,∆ . AΓ→ C, j)
(i,∆A . Γ→ C, j) ε⇒+ A

(i,ΓA /∆→ C, j)
(i,Γ / A∆→ C, j) ε⇒+ A

 ε-Scanning

(i,∆→ C/B, j)
(i,∆ . B → C, j)

(i,∆→ B\C, j)
(i, B /∆→ C, j)

}
Shifting

(i,∆ . A⊗B Γ→ C, j)
(j, .AB → A⊗B, j)

(i,ΓA⊗B /∆→ C, j)
(i, AB/→ A⊗B, i)

}
⊗-Prediction

(i,∆ . AΓ→ C, k) (k,Λ→ A, j)
(i,∆A . Γ→ C, j)

(i,Λ→ A, k) (k,∆A / Γ→ C, j)
(i,∆ / AΓ→ C, j)

 Completion

Figure 3: The system AB⊗Mix.
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